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Abstract. Streaming heterogeneous information is ubiquitous in the era
of Big Data, which provides versatile perspectives for more comprehen-
sive understanding of behaviors of an underlying system/process. Human
analysis of these volumes is infeasible, leading to unprecedented demands
for mathematical tools which effectively parse and distill such data. How-
ever, the complicated nature of streaming heterogeneous data prevents
the conventional multivariate data analysis methods being applied imme-
diately. In this paper, we propose a novel framework together with an
online algorithm, denoted as LSTH, for latent space tracking from hetero-
geneous data. Our method leverages the advantages of dimension reduc-
tion, correlation analysis and sparse learning to better reveal the latent
relations among heterogeneous information and adapt to slow variations
in streaming data. We applied our method on both synthetic and real
data, and it achieves results competitive with or superior to the state-
of-the-art in detecting several different types of anomalies.

1 Introduction

In the era of Big Data, heterogeneity of various information generated from
a same yet complex underlying system/process has become ubiquitous. Exam-
ples of such heterogeneous data include video and audio from a sensor network,
acoustic and articulatory signals during a speech, etc. Such heterogeneous data
provides complimentary or augmented depiction of the system from different
perspectives, allowing more comprehensive understanding of the system than
that from homogeneous data. Albeit the high dimensionality and heterogene-
ity, these data often exhibits low dimensional nature and can be characterized
by a (low dimensional) latent space. Correctly identifying the latent space ben-
efits classical machine learning tasks (e.g., classification [6]), as well as more
novel applications (e.g., the anomaly detection). However, learning from het-
erogeneous data is highly nontrivial. The requirement of operating in real time
imposes further challenges and prevents straightforward extensions of existing
methods.
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Principal Component Analysis (PCA) [7] is arguably the most well-known
method for extracting the low dimensional latent space. A common assump-
tion in applying PCA is that most data is near the low dimensional space. The
anomalies are assumed to be significantly deviated from the space such that using
some simple statistics is sufficient to identify them. Inspired by this assumption,
online PCA [12] techniques are developed to conduct anomaly detection on data
streams. Representative online PCA algorithms include [4] as well as its exten-
sion [17] under union-of-subspace assumption. However, PCA based methods do
not model the relations between the heterogeneous data sources. Therefore, PCA
cannot identify anomalies corresponding to violation of the relations. In contrast,
Canonical Correspondence Analysis (CCA) [5] is a classical method for analyzing
the relation between multiple data sources. And online CCA through stochastic
gradient on generalized Stiefel manifold has been applied to anomaly detection
on time series [19]. However, it still does not fully consider the heterogeneous
nature of the data.

Recently, learning from heterogeneous data has attracted much attention in
machine learning community, particularly in transfer learning, multi-task learn-
ing and multi-view learning. Transfer learning utilizes an auxiliary source domain
data to learn a better model in a target domain, where the two domains are often
heterogeneous [13]. Multi-task learning leverages the relation between multiple
tasks, each of which may work on a different/heterogeneous data domain [6].
Multi-view learning leverages multiple views of same instances for better mod-
els [18]. Many of these works assume a common low dimensional latent space,
and learn a mapping from each data source/view to the latent space in a super-
vised fashion. However, adapting these methods to an online and unsupervised
setting (e.g., anomaly detection task) is not straightforward.

In this paper, we tackle the problem of online learning of heterogeneous
data via latent space tracking. In specific, we propose a framework to track the
low-dimensional latent structures of heterogeneous data and learn their inher-
ent relations. Our formulation incorporates the key insights underlying PCA, CCA,
and sparse learning to enable dimension reduction together with feature selection
for anomaly detection from heterogeneous data. We develop an efficient online
algorithm that effectively conducts Latent Space Tracking from Heterogeneous
data, denoted as LSTH. Based on the learned latent space, we further design
an anomaly detection method that reports anomalies significantly outlying the
latent space. We test LSTH on both synthetic and real datasets. Experimental
results demonstrate that LSTH is effective in revealing relations among heteroge-
neous data for anomaly detection.

The paper is organized as follows. Section 2 formulates the latent space track-
ing problem. Section 3 presents the tracking algorithm. Section 4 further designs
an anomaly detection method as an application of the learned latent space.
Experimental results and conclusions are in Section 5 and 6 respectively.
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2 Problem Formulation

Throughout this paper, vectors are represented by lower-case letters (e.g., x),
and matrices are represented by upper-case letters (e.g., U). By default, all
the vectors are column vectors, while row vectors are represented by having a
transpose superscript� (e.g., x�). We use subscript i and j to index an element
in a matrix (e.g., Vi,j) and subscript t to index a data point at timestamp t (e.g.,
xt) in a data steam. The estimate of a variable is represented by having a hat
over the variable (e.g., Û represents the estimate of U).

We assume xt ∈ R
Dx and yt ∈ R

Dy are the high-dimensional heterogeneous
data samples from a same system at timestamp t, where Dx and Dy are the
number of features in xt and yt, respectively. The heterogeneity of particular
interest in this paper is that xt’s features are correlated, whereas only very few
features in yt describe the states of the system. Heterogeneous data in many real-
life applications exhibits such kind of property. For example, during a speech, yt
can be data recorded by articulatory sensors, which are highly correlated [3] due
to connected muscles. In contrast, xt can be Mel-frequency cepstrum coefficients
(MFCC). Obtained by appending higher order derivatives of acoustic signal,
it contains much redundancy and often need a feature selection [11] step before
further processing. In a stock market, xt could be the prices of multiple correlated
stocks, and yt is massive news about the market [14].

In order to learn the underlying structures and relations among xt and yt,
we monitor the joint probability density p(xt, yt) at each timestamp t:

p(xt, yt) = p(yt|xt)p(xt). (1)

However, since both xt and yt are of high dimensionality, online density estima-
tion for p(yt|xt) or p(xt) is prohibitively difficult. Therefore, we assume there is
a d dimensional latent space (d � Dx,Dy) underlying the data, into which xt
and yt can be transformed via two linear projectors U ∈ R

Dx×d and V ∈ R
Dy×d.

Their projections are denoted as U�xt and V �yt, respectively, which can be con-
sidered as realizations of a common latent variable that determines the states
of the underlying system. U and V will exhibit different structures. Specifically,
while U may span a low-rank subspace as in PCA, V may model a latent space
impacting only a subset of the features in yt.

3 Proposed Approach

We constrain U to be orthonormal (i.e., U�U = I, where I is the identity
matrix) to preserve the magnitude of xt. Thus, the reconstruction error of xt is
‖xt − UU�xt‖2. In this case, we measure the probability distribution of xt by
the reconstruction error [17]:

p(xt) ∝ exp
(−‖xt − UU�xt‖2/σ2

x

)
, (2)
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where σ2
x is the variance of reconstruction error in each dimension. Since the

projections of xt and yt are considered as realizations of a common latent vari-
able, they are expected to be close. Hence, we measure p(yt|xt) by the distance
of the projections in the latent space:

p(yt|xt) ∝ exp
(−‖V �yt − U�xt‖2/σ2

y

)
, (3)

where σ2
y is the variance of the difference between xt and yt in the latent space.

By substituting Equation (2) and (3) into (1) and taking the logarithm, the
log-likelihood can be represented as

log p(xt, yt) ∝ −
[‖V �yt − U�xt‖2

σ2
y

+
‖(I−UU�)xt‖2

σ2
x

]

.

In addition, we constrain V to exhibit “group sparse” structure so that applying
V performs feature selection from yt to identify the most informative features.
We use the mixed norm ‖V ‖1,2 �

∑Dy

i=1 ‖v�i ‖2 to introduce sparsity into V ,
where v�i is the i-th row of V .

To enable tracking in a slowly evolving environment, we apply an exponen-
tially decaying window to downweigh the historical samples. In addition, we
define σ = σ2

y/σ
2
x, and denote the estimates of U and V at timestamp t as Ût

and V̂t, respectively. Then we formulate the following optimization problem to
find the projectors U and V at timestamp t:

(Ût, V̂t) = arg min
U�U=I,V

F (U, V ; t, α, σ, λ)

= arg min
U�U=I,V

t−1∑

k=0

αk

2

(
‖U�xt−k − V �yt−k‖2 + σ‖(I−UU�)xt−k‖2

)
+ λ‖V ‖1,2,

(4)

where α ∈ (0, 1] is a forgetting factor over historical samples to implement
the decaying window, σ balances between projection residual and discrepancy
in the latent space, and λ is the regularization parameter for sparsity. Note that
the data stream starts from t = 1.

In the above F (U, V ; t, α, σ, λ), the first term measures the discrepancy of
two data sources in the latent space. It has the flavor of CCA that maximizes
the correlation of two projections. Same as PCA, the second term imposes low-
dimensional structure in xt. It is important to highlight the ‖V ‖1,2 term here.
‖v�i ‖2 indicates the significance of the i-th feature in yt. In addition, ‖V ‖1,2 is
invariant if multiplying an unitary matrix to the right of V . Therefore, the cost
of (4) depends on the subspace spanned by Ût and V̂t rather than the particular
basis chosen.

3.1 A Batch Algorithm

We first present a batch algorithm, denoted as bLSTH, to solve U and V for
simplicity. The bLSTH algorithm will be further modified into an online version
in Section 3.2.
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Algorithm 1. The Batch Algorithm bLSTH

Input: samples X ∈ R
Dx×L, Y ∈ R

Dy×L

Parameters: λ, σ, latent dimension d
Output: Û and V̂
i← 0, U [0]← the first d principal components of X
repeat

i← i+ 1
Z ← U [i− 1]�X

V [i]← arg min
V

1
2
‖V �Y − Z‖2F + λ‖V ‖1,2 (6)

W ← V [i]�Y

U [i]← arg min
U�U=I

1
2

(‖U�X −W‖2F + σ‖(I−UU�)X‖2F
)

(7)

until U [i], V [i] converge or i is large enough
Û ← U [i], V̂ ← V [i]

In bLSTH, L buffered samples X = [x−L+1, · · · , x0], Y = [y−L+1, · · · , y0] are
used to solve the following optimization problem:

(Û , V̂ ) = arg min
U�U=I,V

1
2

(
‖U�X − V �Y ‖2F + σ‖(I−UU�)X‖2F

)
+ λ‖V ‖1,2.

We use an alternating method to solve for Û and V̂ , as presented in Algorithm 1.
The optimization problem in Equation (6) of Algorithm 1 is a well-studied con-
vex optimization problem. Now we focus on the optimization problem in Equa-
tion (7). The objective can be reformulated as:

f(U ;σ) � 1
2

(‖U�X −W‖2F + σ‖(I−UU�)X‖2F
)

=
1
2
(1− σ) tr

{
U�XX�U

}− tr
{(
XW�

)
U�

}
,

(5)

where U�U = I and W = V �Y . This orthonormality constrained problem is
non-convex. However, we are able to find a local minimum within a few itera-
tions and our experiments show that even local minimum is able to give good
results. Following the idea in [8], we use a majorization minimization scheme.
The basic idea is to construct a non-decreasing sequence f(U [1]), . . . , f(U [k]), . . .
that converges to a local minimum of f(U). Specifically, suppose we are at U [k],
we construct a surrogate function gk(U) that satisfies

f(U) ≤ gk(U) and f(U [k]) = gk(U [k]). (8)

That is, gk(U) is an upper bound of f(U) and the equality holds when U =
U [k]. Assign the global minimizer of gk(U) to U [k + 1], thus the sequence
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f(U [1]), . . . , f(U [k]), . . . is guaranteed to be non-increasing due to the properties
of gk(U) as in Equation (8) and the notion of global minimizer. In practice, a
surrogate function should be constructed such that its global minimizer is eas-
ily obtained. The following two lemmas suggest one form of such gk(U) and its
global minimizer.

Lemma 1. For any given orthonormal matrix U [k] ∈ R
Dx×d, the following

gk(U ; a) defined on the set of orthonormal matrices U ∈ R
Dx×d

gk(U ; a) = tr
{[

(1− σ)(XX� − a I)U [k]− (XW�)
]�
U

}
+ c

is a surrogate function for the f(U ;σ) in Equation (5), where c is some constant
independent of U . And the scalar a chosen as

a =
{
λ∗ σ < 1
0 σ ≥ 1 ,

where λ∗ is the maximum eigenvalue of XX�.

Proof. The proof leverages Rayleigh quotient inequality and is omitted for con-
ciseness.

Lemma 2. [10] The global minimizer of

min
U�U=I

− tr{A�U}

is PQ�, where PΣQ� = A is the Singular Value Decomposition (SVD) of A.

Using Lemma 2, the global minimizer of the surrogate function gk(U ; a) has a
closed form arg minU�U=I gk(U ; a) = PQ�,where PΣQ� is the SVD of XW� −
(1−σ)(XX�−a I)U [k].Thus, by applying Lemma 1 and 2, the problem in Equa-
tion (7) can be solved via the iterative majorization minimization process as
presented in Algorithm 2, where G � XW� = XY �V and Cx � XX�. A
special case is when σ = 1, in which the minimizer of f(U ;σ) is given by the
closed-form solution directly by Lemma 2.

3.2 An Online Algorithm

Here we derive the online algorithm LSTH from bLSTH. We use the solution (Û ,
V̂ ) by bLSTH on the samples X = [x−L+1, · · · , x0], Y = [y−L+1, · · · , y0] as the
initialization (Û0, V̂0) for the online updates, assuming the online process starts
from timestamp t = 1. We also use an alternating method to track (Ut, Vt) with
the following definition of projections of xt and yt into the latent space:

zt � U�t xt, wt � V �t yt.

The online algorithm LSTH consists of an initialization via bLSTH and iterative
online updates of U and V , as presented in Algorithm 3.
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Algorithm 2. Updating U for bLSTH

Input: orthonormal U , scalar σ, cross-covariance matrix G
auto-covariance matrix Cx

Output: Uupdated

k ← 0, U [k]← U

repeat
k ← k + 1

compute SVD: PΣQ� = G− (1− σ)(Cx − a I)U [k − 1] (9)
U [k]← PQ�

until U [k] converged or k is large enough
Uupdated ← U [k]

Online Tracking of Ut. Upon arrival of new data (xt, yt) at t, we use V̂t−1 to
estimate the projection of yt at t as follows:

ŵt = V̂ �t−1yt. (10)

Substituting the ŵt into Equation (4), we will see that the objective function
of U is of the same form as (5), except that the historical xt are downweighed.
Therefore it can be minimized via Algorithm 2 with the only modification that
G in Equation (9) is replaced by

∑t−1
k=0 α

kxt−kŵ�t−k, and Cx is replaced by
∑t−1
k=0 α

kxt−kx�t−k. Both of these two summations can be incrementally updated.

Online Tracking of Vt. Given Ût solved as in Section 3.2, we use Ût to estimate
zt at current timestamp t as follows

ẑt = Û�t xt. (11)

Substituting ẑt into Equation (4), we can get the following objective function
w.r.t V ,

FV (V ; t) =
t−1∑

k=0

[
αk

2

∥
∥V �yt−k − ẑt−k

∥
∥2

2

]

+ λ‖V ‖1,2. (12)

For the above problem, we derive a Stochastic Coordinate Descent (SCD) method
with a similar spirit as [9]. The SCD admits a row-wise updating of V̂t, details
can be found in Equation (13) in Algorithm 3.

3.3 Complexity Analysis

The complexity of LSTH is O(c ·D2
xd+D2

yd), where c ·D2
xd is due to the SVD step

in Equation (9) and c is the number of iterations in majorization minimization
for U (c = 1 suffices in practice). Efficient algorithms for computing the SVD of a
sequentially updated matrix [2] can be applied to reduce the complexity. D2

y ·d is
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due to the coordinate descent algorithm on V , for which further acceleration can
be achieved via active set tricks. Our experiments show that LSTH is sufficiently
fast for real applications, for example, 20 ms for the XRMB dataset (sampling
interval: 25 ms/sample). The experimental details will be presented in Section 5.
To reduce the complexity of LSTH is very important and it is left for future
exploration for now.

4 Application: Anomaly Detection

The basic idea of our anomaly detection method is to monitor ‖U�xt−V �yt‖2+
σ‖(I−UU�)xt‖2. We define the a priori error:

ξt � ‖Û�t−1xt − V̂ �t−1yt‖2 + σ‖xt − Ût−1Û
�
t−1xt‖2, (14)

and use ξt as the detection statistic. An anomaly is claimed only when p(xt, yt)
appears to be significantly small, corresponding to ξt being significantly large.
We maintain a sliding window over ξt with the mean μt and standard deviation
νt within the window. When the new (xt+1, yt+1) arrives, we compare its ξt+1

Algorithm 3. The Online Algorithm LSTH

Parameters: d, α, λ, σ
Input: data stream: · · · , (x0, y0), · · · , (xt, yt), · · ·
Obtain Û0 and V̂0 by Algorithm 1
for t = 1, 2, . . . do

//update Ût
ŵt ← V̂ �t−1yt
Gt ← αGt−1 + xtŵ

�
t /*G0 =

∑0
τ=−L+1 xτw

�
τ */

Cx,t ← αCx,t−1 + xtx
�
t /*Cx,0 =

∑0
τ=−L+1 xτx

�
τ */

get Ût via Algorithm 2 with (Ût−1, σ, Gt, Cx,t) as input
//update V̂t
ẑt ← Û�t xt
Ht ← αHt−1 + ytẑ

�
t /*H0 =

∑0
τ=−L+1 yτz

�
τ */

Cy,t ← αCy,t−1 + yty
�
t /*Cy,0 =

∑0
τ=−L+1 yτy

�
τ */

for i = 1, 2, . . . ,Dy do
Calculate the i-th row of V̂t:

v̂�t,i =
S(‖h�t,i −

∑
j �=i v

�
t−1,jCy,t,i,j‖, λ)

Cy,t,i,i
× h�t,i −

∑
j �=i v

�
t−1,jCy,t,i,j

‖h�t,i −
∑
j �=i v

�
t−1,jCy,t,i,j‖

, (13)

where S(·, λ) is the soft thresholding function with parameter λ.
end for

end for
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with a threshold bt = μt+γνt, where γ > 0 indicates the effect of variance. Once
ξt+1 exceeds the threshold, an anomaly is claimed.

Additional care need to be taken for the claimed anomalous data points. In
specific, if the anomaly behaves as a sudden outlier after which the data stream
goes back to normal state, then the anomalous data point should be excluded
for model updating. The other case is that the anomaly is in fact the start of
a different stage in the data stream, then the anomalous data point should be
included in model updating. These two cases will be addressed in synthetic and
real data experiments respectively.

5 Experiments

In this section, we conduct comparative experiments to demonstrate the perfor-
mance of LSTH in tracking the latent space for anomaly detection. All types of
tracking methods as well as their corresponding anomaly detection statistics are
summarized in Table 1.

Table 1. Latent space tracking methods and corresponding detection statistics

method detection statistics semantics

LSTH ξt = ‖Û�
t−1xt − V̂ �

t−1yt‖2 + σ‖xt − Ût−1Û
�
t−1xt‖2

latent discrepancy
and projection
residual

δt = Ĉx,t−1rx,t/Dx + r
�
y,tĈy,t−1ry,t/Dy where

rx,t = (Ĉ
−1
x,t−1 − Ût−1Û

�
t−1)xt and ry,t = (Ĉ

−1
y,t−1 − V̂t−1V̂

�
t−1)yt

projection residual
(online) onto Generalized
CCA Stiefel manifold

[19]
(online) projection residual
PCAx εx,t = ‖(I−Ût−1Û

�
t−1)xt‖2 onto individual or

PCAy εy,t = ‖(I−Ût−1Û
�
t−1)yt‖2 joint signal subspace

PCAxy εxy,t = ‖(I−Ût−1Û
�
t−1)[xt; yt]‖2 [4]

5.1 Experiments on Synthetic Data

We generated a synthetic dataset with continuous data xt ∈ R
500 and sparse,

discrete and non-negative data yt ∈ R
1000. The xt’s are generated via a linear

model xt = Aθt + nt, t = 1, . . . , 10500. where A ∈ R
500×10, θt ∈ R

10 and
nt is white Gaussian noise. The yt’s are generated as of dimension 1000. The
first 50 features of yt’s are relevant to the underlying system, generated via
Bθt +mt, t = 1, . . . , 10500, where B ∈ R

50×10 and mt is white Gaussian noise.
The rest 950 dimensions are padded as noise. We introduced sparsity into yt
by randomly setting half of its values to zero. In the end we round the yt to
non-negative integers. In this way, yt is analogous to the real-world documents
in bag-of-words representation. In this generated dataset, we introduced three
types of anomalies, all of them are sudden outliers.
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Table 2. Synthetic dataset: AUC and parameters

method Type-1 Type-2 Type-3
AUC parameters AUC parameters AUC parameters

LSTH 0.863/0.860 10,10,1,10 0.995/0.993 10,10,1,10 0.984/0.979 10,20,1,0
CCA 0.848/0.859 10 0.020/0.019 10 0.971/0.950 500
PCAx 0.500/0.525 10, 1 0.015/0.018 10, 1 0.013/0.016 10, 1
PCAxy 0.644/0.662 20, 1 0.744/0.730 20, 1 0.977/0.971 20, 1
PCAy 0.298/0.365 10, 1 0.015/0.015 10, 1 0.977/0.960 20, 1
The parameters for LSTH are d (dimension of the latent space), λ, α and σ, respectively, The param-
eter for CCA is d. The parameters for PCAx, PCAxy and PCAy are d and the forgetting factor, respec-
tively. AUC of the precision-recall plot is used for evaluation; the larger the AUC value is, the better
the performance is. The values under AUC column (i.e., x/y) are the performance on training and
testing set, respectively. Bold numbers correspond to the best performance for each anomaly type
among all the methods.

Type-1 anomaly: at t = 500, 600, . . . , 10400, xt is distorted to x̃t = Ãθt+nt,
where Ã is identical to A except that one row of Ã is randomly re-drawn from
N (0, 1). At the same timestamps when A is distorted, B in generating yt is
also distorted to B̃ by randomly re-drawing 5 of its rows from N (1, 0.32). This
corresponds to the scenario when both xt and yt behave anomalously at same
time.

Type-2 anomaly: at t = 500, 600, . . . , 10400, only xt is distorted to x̃t =
Aθ̃t + nt with θ̃t ∼ N (3.5, 1), that is, the latent variable θt is distorted. In
this way, a discrepancy is introduced between the latencies of x̃t and yt. This
corresponds to the scenario when xt has anomalies but yt behaves normally.

Type-3 anomaly: At t = 500, 600, . . . , 10400, three relevant features and
three among the rest 950 features of yt are exchanged. This corresponds to the
scenario when some relevant features in yt are changed while xt remains normal.

Experimental Results on Synthetic Data. We compare all methods in
Table 1 for anomaly detection task. For all the methods, the first 100 samples
are used for initialization. The γ in computing detection threshold is varied to
produce a full precision-recall plot. The parameters are selected as the ones that
maximize the Area Under Curve (AUC) of the precision-recall plot on a training
set generated separately from the same data generation protocol. Results are pre-
sented in Table 2. For the three types of anomalies, LSTH consistently achieves the

0

4

8

12

16

25 50 75 100 125 · · · 1000

‖v
� i
‖

V row index

row norm of V

Fig. 1. Feature selection effects of LSTH

Table 3. XRMB results

method AUC parameters

LSTH 0.342 20,300,0.95,1000
CCA 0.045 30
PCAx 0.035 20, 1e-5
PCAxy 0.035 30, 1e-5
PCAy 0.033 30, 1e-5

The parameters for each method are
same as those in Table 2 in paper.
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best detection performance. CCA is competitive for Type-1 and Type-3 anomalies
but completely fails for Type-2, due to the fact that its detection statistic cannot
capture the changes in the signal/latent space. The failure of PCAx on Type-2 has
a same reason as that of CCA on Type-2. On average, PCA based methods perform
worst among all the methods except for Type-3. However, by joining two data
sources properly, PCAxy is able to detect the change of the “joint” subspace so
as to achieve better performance than PCAx and PCAy.

Figure 1 shows the norm of each row of the learned V , after all the updates
of LSTH at t = 10500. For the relevant (i = 1, . . . , 50) features in yt, ‖v�i ‖ are
non-zero. For the irrelevant features (i > 50), ‖v�i ‖ are zero or very small. This
demonstrates that LSTH can successfully identify the relevant features via the
mixed norm on V .

5.2 Experimental Results on Real Data: XRMB

XRMB [16] contains synchronous 273-dim MFCC and 112-dim articulatory infor-
mation of length 51K. Each timestamp has a label indicating which word it
corresponds to. Details on the data are available in [1]. Speech segmentation
has attracted lots of attention for treating related diseases [15]. The task in our
experiment is to detect the boundary of words from acoustic and articulatory
features. During each segment, a tracking algorithm, e.g., LSTH, gradually learns
the underlying latent subspace. Upon arrival of a new segment, the underlying
latent space has a sudden change. This event may induce a drastic change of the
detection statistics provided by the tracking algorithms, and therefore is consid-
ered as an anomaly. In this case, the claimed anomalous data point should be
incorporated in learning the new latent space in the new segment.

When applying LSTH, we assign to xt the articulatory features with highly
correlated dimensions [3]. And yt is designated as the MFCC, which is redun-
dant and sparse filtering has been shown necessary for feature selection [11]. We
randomly select 1000 frames for parameter tuning for all the methods, and use
the tuned parameters for testing on the rest of the frames. Figure 2 shows the
detection statistics of all methods on the parameter tuning dataset. Out of 25
words within the 1000 frames, LSTH is able to identify 15 words with clear and
strong spikes in the detection statistics. After each alarm of anomaly (start of
a new segment), it quickly adapts to the new latent space in the new segment.
PCA based methods only show weak spikes. CCA fails in this case, as the conclu-
sion in [1]. Based on their results, kernel CCA should be a better approach on
this dataset than CCA. However, there is not a meaningful detection statistic for
kernel CCA, so we leave this approach for later research.

We then applied all the methods on the rest of the data with their optimal
parameters tuned on the training set. The parameters and the performance of
different methods are presented in Table 3. LSTH has an AUC value 0.342 (note
that a random guess would give an AUC of 412/51000 = 0.008) and it is the
only method that can detect the boundaries of the words from XRMB dataset.
All the other methods fail with AUC values smaller than 0.05.
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Fig. 2. Detection statistics on XRMB training data

6 Conclusions and Discussions

We developed LSTH, a latent space tracking method for heterogeneous stream-
ing data. Under the assumption that anomalies significantly deviate from the
latent space, we further designed an anomaly detection method based on LSTH.
Experimental results demonstrate that LSTH’s detection statistics outperform
the other state-of-the-art in identifying anomalies. Therefore LSTH better char-
acterizes the latent structure of heterogeneous data than does the other methods.
Future work on LSTH includes non-linear mapping into the latent space via ker-
nelization, online supervised learning in the latent space, and extending to cases
with more than two views of a system.
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